- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Grefa, Joaquin (1)
-
Hippert, Mauricio (1)
-
Manning, T Andrew (1)
-
Noronha, Jorge (1)
-
Noronha-Hostler, Jacquelyn (1)
-
Ratti, Claudia (1)
-
Rougemont, Rômulo (1)
-
Trujillo, Michael (1)
-
Vazquez, Israel Portillo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
Bellwied, R (1)
-
Geurts, F (1)
-
Rapp, R (1)
-
Ratti, C (1)
-
Timmins, A (1)
-
Vitev, I (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bellwied, R; Geurts, F; Rapp, R; Ratti, C; Timmins, A; Vitev, I (Ed.)We present results for a Bayesian analysis of the location of the QCD critical point constrained by first-principles lattice QCD results at zero baryon density. We employ a holographic Einstein-Maxwell-dilaton model of the QCD equation of state, capable of reproducing the latest lattice QCD results at zero and finite baryon chemical potential. Our analysis is carried out for two different parametrizations of this model, resulting in confidence intervals for the critical point location that overlap at one sigma. While samples of the prior distribution may not even predict a critical point, or produce critical points spread around a large region of the phase diagram, posterior samples nearly always present a critical point at chemical potentials of μBc∼ 550 − 630 MeV.more » « less
An official website of the United States government
